

EPIC Workshop

Running the Short-Range Weather App on the Cloud

Objective: I can use the Short-Range Weather Application to run, modify, and compare forecast outputs.

Jamiel Farhat - Technical Training Specialist - ?'s about EPIC

Dr. Neil Jacobs - Chief Science Advisor for the UFS - ?'s about UFS

Dr. Mark Potts - Lead Cloud Computing Engineer - ?'s about Accessing the Cloud

Dr. Jeff Beck and Dr. Gerard Ketefian - <u>SRW App Developers</u> - ?'s about the SRW App

How to use Slack

#ams-short-course-2022

If you have a question, pose it in this channel. Click "reply in thread" if answering a question.

If you have technical issues, the break out room is open for one-on-ones.

What is the Unified Forecast System (UFS)?

Community Based

Code is public on Github which engages developers, educational institutions, federal agencies, and the private sector to improve model

Broad Spatial and Temporal Domain

Spans spatial scales from local to global and temporal scales from sub-hourly to seasonal forecasts

Subset of UFS weather model that satisfies a specific use case (Medium Range Weather, Short Range Weather, Hurricane, etc) Goal to combine suite of forecasting models (GFS, NAM, HRRR, etc) into one

Applications

Future Operational NWP Model

EARTH PREDICTION INNOVATION CENTER (EPIC)

Overview of the Unified Forecast System Short-Range Weather (SRW) Application

Jeff Beck

Participating Organizations: EPIC, DTC, NOAA labs (GFDL, EMC, GSL, NSSL, GLERL), NCAR, CIRA, CIRES, CIWRO, others

Code Review Committee: EMC (Chan-Hoo Jeon, Ben Blake, Ratko Vasic), EPIC (Mark Potts, Jong Kim), GLERL/UM (David Wright), GSL (Jeff Beck, Gerard Ketefian, Linlin Pan, Christina Holt, Christopher Harrop, Daniel Abdi), NCAR (Mike Kavulich, Will Mayfield), NSSL (Yunheng Wang)

UFS Background

NOAA's numerical weather prediction (NWP) efforts have organized around a vision of a unified community-based modeling system, i.e. Unified Forecast System (UFS)

- Configurable for multiple applications across domains from global to regional to convection allowing (and ultimately cloud-resolving) forecasts
- Designed to be the source system for operational applications
- Applications are UFS configurations that support particular forecast requirements
- Each application can combine a numerical model, data assimilation, pre- and post-processing, a workflow, and other elements

SRW App:

Covers short-range weather & convection-allowing atmospheric phenomena from less than an hour to several days

UFS Short-Range Weather (SRW) Application

- Weather Model
 - Finite-Volume Cubed-Sphere Dynamical Core (FV3)
 - Limited Area Model (LAM) capability
 - Common Community Physics Package (CCPP)
- End-to-end Application
 - User-friendly build system that invokes CMake
 - Experiment generation with support for the Rocoto workflow manager
 - stand-alone scripts
 - Pre-processing, model execution, post-processing (official release), verification
 - Python scripts for basic graphics
- Comprehensive documentation
- User support forum: https://forums.ufscommunity.org/

Uniform global grid

SRW Application Features Background: global configuration

- FV3 = Finite Volume Cubed
- "Cubed" refers to the global cubed-sphere grid, where the sphere surface is projected onto the 6 faces (tiles) of a cube
- Uses a gnomonic projection, i.e. great circles serve as model coordinates
- Offers good grid uniformity: ratio of largest to smallest cell size is only √2 (if not using grid stretching/refinement)
- Allows for higher resolution (at a fixed horizontal location) via grid stretching (Schmidt transformation) and grid nesting (refinement), but must still run the forecast on a global domain

Stretched global grid

SRW Application Features Regional (or LAM = Limited Area Model) Capability

- Motivated by convection-allowing modeling applications needs
- Uses a single logically rectangular grid with lateral boundary conditions provided by an external model (e.g. FV3GFS, HRRR, RAP, NAM)
- Several predefined grids available in the SRW App. The following are supported in Version 2 of the App:
 - RRFS_CONUS_25km
 - RRFS_CONUS_13km
 - RRFS_CONUS_3km
- User may specify custom domains/grids

SRW Application Features

Regional (or LAM = Limited Area Model) Capability

- Two regional grid generation methods are available: "GFDLgrid" and "ESGgrid"
- "GFDLgrid":
 - Defines the regional grid with respect to a parent global cubed-sphere grid
 - Parent global grid covers the globe with 6 tiles
 - A 7th tile is created as a subregion of tile 6 and serves as regional grid; tiles 1 through 6 discarded before forecast is run
- "ESGgrid":
 - ESG = Extended Schmidt Gnomonic
 - More uniform regional grids than those generated via "GFDLgrid" method
 - Mathematical extension of Schmidt transformation to generate very uniform regional grids
- Most predefined grids in SRW App use the "ESGgrid" method

GFDL grid

ESG grid

10

SRW Application Features System Steps

- Build and compile
 - Umbrella CMake-based build system for all the code components to run the end-to-end SRW App workflow
- Create an experiment
 - Many customization options available
 - Script then builds configuration/namelists
- End-to-end execution with task management using Rocoto or stand-alone scripts
 - Pre-processing
 - Model execution
 - Post-processing using the Unified Post Processor
- Python scripts for basic graphics from UPP grib2 files

SRW Application Features Workflow Tasks

Run once

for each

cycle

- 1. make_grid: Generates grid files
- 2. make_orog: Generates filtered orography files
- 3. make_sfc_climo: Generates surface climatology files (used if fields are not available in external model output)
- 4. get_extrn_ics: Retrieves output files from the external model needed for generating ICs, surface fields, and the 0-th hour LBC
- 5. get_extrn_lbcs: Retrieves output files from the external model, needed for generating LBCs
- 6. make_ics: Creates ICs on the native FV3- LAM grid (including surface fields and the 0-th hour LBC)
 - 7. make_lbcs: Creates LBCs for each boundary condition interval on the FV3-LAM grid
 - 8. run_fcst: Runs a forecast (cycle) with the FV3-LAM
- 9. run_post: Processes write-component forecast output files through UPP generate grib2 files Run once per expt (optional) Run once for each cycle

SRW Application Features

Physics suites

- Four supported physics suites for SRW App v2 (available through CCPP)
- More available in develop branch

	GFS_v16	RRFS_v1beta	HRRR	WoFS_v0		
Radiation (SW/LW)	RRTMG	RRTMG	RRTMG	RRTMG		
Microphysics (MP)	GFDL	Thompson Aerosol Aware	Thompson Aerosol Aware	MP-2M (orig NSSL)		
Boundary Layer (PBL)	TKE-EDMF	MYNN-EDMF	MYNN-EDMF	MYNN-EDMF		
Surface Layer (SL)	GFS	MYNN	MYNN	MYNN		
Gravity Wave Drag (GWD)	None	SSGWD/TOFD	SSGWD/TOFD	SSGWD/TOFD		
Land Surface Model (LSM)	Noah	NoahMP	RUC	Noah		
Deep Convection (DCU)	sa-SAS	None	None	None		
Shallow Convection (SCU)	sa-MF	None	None	None		
Lake Model (LM)	NSST	NSST	NSST	NSST		

SRW Application Features - Code Repositories

Repository Description	Authoritative repository URL							
Umbrella for the UFS SRW Weather App	https://github.com/ufs-community/ufs-srweather-app							
Umbrella for the UFS Weather Model	https://github.com/ufs-community/ufs-weather-model							
Regional Workflow	https://github.com/ufs-community/regional_workflow							
Software Stack/Libraries	https://github.com/NOAA-EMC/hpc-stack							
UFS Utilities	https://github.com/ufs-community/UFS_UTILS							
Unified Post Processor	https://github.com/NOAA-EMC/EMC_post							

All components are in public repositories on GitHub Posting of issues and submission of pull requests encouraged

Wiki pages on GitHub include helpful/getting started information

Platform Support

Level 1: Preconfigured platforms

- Prerequisites and libraries installed
- Workflow & model build/run out of the box
- Comprehensive testing before release

Level 2: Configurable platforms

- Prerequisites and libraries expected to install
- Workflow and model expected to build/run
- Comprehensive testing before release

Level 3: Limited-test platforms

- Prerequisites and libraries expected to install
- Workflow and model should build and run
- Limited testing

Level 4: Build-only platforms

- Prerequisites and libraries expected to install
- Workflow and model should build
- Very limited tests of running the model

- macOS
- RedHat

All generic platforms with GNU

NCAR Chevenne (Intel & GNU)

Cloud via Parallel Works

TACC Stampede (Intel)

MSU Orion (Intel)

Odin (Intel)

NOAA Hera, Jet, AWS and Google

UFS Short-Range Weather App Users Guide

User Support

- Documentation
 - SRW App User's Guide (UG): <u>https://ufs-srweather-app.readthedocs.io/en/develop/</u>
 - All components included:
 - UFS_UTILS, ufs-weather-model, FV3, CCPP, UPP, verification, visualization, etc.
- Forums
 - <u>https://forums.ufscommunity.org</u>
 - Participation from Subject Matter Experts (SMEs)
 - Build knowledge within the community

UFS Short-Range Weather App Users Guide 1. Introduction 1. Introduction 2. Workflow Quick Start 1.1. Pre-processor Utilities and Initial Conditions 3. Code Repositories and Directory 1.2. Forecast Model Structure 1.3. Post-processor 4. Short-Range Weather Applicatio 1.4. Visualization Example Overview 1.5. Build System and Workflow 5. Configuring the Workflow: config. 1.6. User Support, Documentation, and Contributing Development and config defaults.sh 1.7. Future Direction 6. Limited Area Model (LAM) Grids: a 1.8 How to Use This Document Predefined and User-Generated Options 2. Workflow Ouick Start 7. Input and Output File 2.1. Download the UFS SRW Application Code 8. Configuring a New Platform 2.2. Set up the Build Environment 9. Workflow End-to-End (WE2E) Test o 2.3 Build the Executables 10. Graphics Generation 2.4. Generate the Workflow Experiment 11. FAO · 2.4.1. Set up config.sh file 12. Additional Rocoto Information · 2.4.2. Set up the Python and other Environment Parameters 13. Glossary • 2.4.3. Run the generate_FV3LAM_wflow.sh script UFS UFS USERS' SUPPORT FORUMS Latest Forum Topics

* WFS Short-Range Weather App Users Guide

EARTH PREDICTION INNOVATION CENTER (EPIC)

SRW Application Graduate Student Test (GST)

- Help measure success of the release related to code availability and development processes to the broader community
- Assesses whether a student can do the following (easily) in under six hours:
 - Get, build, run, and change code, test code for correct operation
 - Evaluate code with standard diagnostic packages
 - Locate documentation, user support, and training
- Short-Range Weather Application GST
 - Includes a severe weather example case (15 June 2019) as a default, plus allows the user to change the physics suite and resolution in multiple iterations
 - Visually compare a number of output fields through use of Python scripts

17

EARTH PREDICTION INNOVATION CENTER

Unified Forecast System -**Operational Implementation Timelines**

NPS Modeling	Current	Q3	Q4	Q1	Q2	Q3FY21 - Q2FY22	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	UFS
System	Version	FY 20	FY 20	FY 21	FY 21	MORATORIUM	FY 22	FY 22	FY 23	FY 23	FY 23	FY 23	FY 24	FY 24	FY 24	FY 24	Application
Global Weather &	GFS/																
Global Analysis	GDASv15				GFSv16												
Global Waves	GWMv3																
Global Weather																	
Ensembles	GEFSv11																UFS Medium
Global Wave			GEFSv12														Range & Sub-
Ensembles	GWESv3													GFSv17/			Seasonal
Global Aerosols	NGAC v2													GEFSv13			
Short-Range Regional Ensembles	SREFv7																
Global Ocean & Sea-																	
Ice	RTOFSv1.2			RTOFSv2					RTOFSv3								UFS Marine &
Global Ocean																	Cryosphere
Analysis	GODASv2								GODASv3								
Seasonal Climate	CDAS/CFSv2															SFSv1	UFS Seasonal
Regional Hurricane 1	HW/REv12		HWREV13														
	110010 012						HAFSv1				HAFSv2				HAFSv3		UFS Hurricane
Regional Hurricane 2	HMONv2	HIMOINV3															
Regional High	HiRes																
Resolution CAM 1	Window v7			THILE STORE OF													
Regional High	NAM nests/																
Resolution CAM 2	Fire Wxv4																
Regional High	RAPv4/			RAPv5/													
Resolution CAM 3	HRRRv3			HRRRv4						RRESVI				DDESv2			UFS Short-
Regional HiRes CAM				unrea										RRF3V2			Range Regional
Ensemble	HREFv2			TREFVS													HiRes CAM &
Regional Mesoscale																	Regional Air
Weather	NAMya																Quality
	-								-								
Regional Air Quality	CMAQv5						CIVIAQVO										
			RTMA/								3DRTMA/						
Regional Surface	RIMA/ URMA		URMA								URMAv3						
Atmosultanta	V2.7		V2.8														
Atmospheric Transport &																	UFS Air Quality
Dispersion	LIVEDUTV7						HYSFLIIVO								nysruivs		& Dispersion
Coastal & Regional	Thysrelly?						_		_			_				_	
Waves	NWPSv1 2			NWPS v1.3			NWPS v1.4						RWPSv1				UFS Coastal
Great Lakes	GLWUv3.4						GLWUv4								GLWUv5		UFS Lakes
				NIM/MU2							DINA/DAVA						
Regional Hydrology	NWMv2			Contract												_	ST S TIYUTOIOBY
Space Weather 1	WAM/IPEv1															MANA	UFS Space
Space Weather 2	ENLILv1																Weather