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Introduction

Looking for the Next Breakthrough in Modeling and Model initialization...
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Upgrading the NWP forecast and analysis systems

Constraints and Challenges

Innovating within the Modus
Operandi

Overcoming ongoing Challenges to
Innovation:

HISTORY OF GFDL COMPUTING

Growth of Computational Power with Time

-
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Is Data Science (ML/AI) an Alternative/Supplemental Development Path?
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Machine Learning and Earth Modeling

Machine learning: The study of computer algorithms that improve automatically through learning from data by using mathematics and
the scientific process.

Why Now:
1. Unprecedented data volume
o  Our current analytical capabilities restrict the discovery

2. Daily maturation of the Al/ML capabilities/algorithms
o  Hundreds of applications are published daily

3.  Evolution of hardware allows efficient ML models training
o NVIDIA, AMD, Graphcore, Atmo, and more

4, Availability of open-source, well-documented, extensively tested
software frameworks

o TensorFlow, PyTorch, Keras, Scikit-Learn and more

Driven by the (Weather) Industry,

5.  The cost of running ML models is orders of magnitude lower than for the ML solutions have been
NWP models adopted!
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Adoption of ML/AI from Governmental Institutions

NOAA / NWS (Boukabara et al., 2020) ESA/ECMWF (Schneider et al., 2022)

Earth e i Boukabara et Standardization of ML applications within the NWP:
chaepeton Biascomection al., 2020 1. Enhancing Satellite Observation with ML
anclemate = Data a.  Earth monitoring, biomass and volcanic plumes
AEMRg I':;::‘::::_‘ assimilation b. _ Radar baclfsc_attelr and optical images
« 2. Hybrid Data Assimilation - ML approaches
Forward models . . . . .
S a. Approximation of nonlinear systems and extracting meaningful
- features from high-dimensional data
:.h:.'..'.':.'::’ e b. Replacement of physically based model
Envi P - c. Application error corrections
el 3.  Geophysical Forecasting with ML and Hybrid Models
B S a.  Speed up complex and time-consuming processing
Empirical parameterizations b. Di agn ostics
T c. Model improvements
o 4. ML for Post-Processing and Dissemination
-range forecasts Extreme . I
— weather a. Post-procgssmg and optimization forecast outputs
:"'_M i monitoring and b.  Downscaling
faricanes prediction
Probabilistic guidance
Analog forecasting
Nonlinear ensemble averagi - . .
, = Intention: Integration of ML in the
Post-processing .
of forecasts current forecast paradigm.
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ML-Based Innovation in the Weather Industry

Broad spectrum of ML applications

Schneider et al., 2022: ESA-ECMWF Report on recent progress and research directions in machine learning for Earth System

observation and prediction.
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*Sgnderby et al., 2020 - Neural-net based precipitation nowcasting

*Herman & Schumacher, 2018 - Extreme precipitation forecasts with Random Forests
Rasp & Lerch, 2018 - Neural network post processing of temperature
Brey & Eckel, 2020, Dai and Hemri 2021- Ensemble ML-Prediction for Cloud Cover
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ML in post-processing at Tomorrow.io

Seamlessly merging multiple weather models into one intelligent and accurate forecast

ECMWF HRES Hourly Precip Forecasts ECMWF HRES Temperature Forecasts
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Focusing on the grand challenges of forecast, e.g., Precipitation Prediction
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ML in Action at Tomorrow.io

ML is used to learn and correct the errors of traditional physics-driven forecasts

Predictions

Input Predictors
Deterministic or

Ensemble:

>

Precipitation
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B, A prediction
&ll/?’ MENT OF C‘O‘h\‘@ ’
Any physically The exact model, configuration, features,
relevant training strategy, efc., vary
observation prediction-to-prediction.

Proprietary and Confidential
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ML in Action at Tomorrow.io

ML is used to learn and correct the errors of traditional physics-driven forecasts and can provide uncertainty

Input Predictors

Deterministic

— Predictions prediction
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36 z
Any physically CRPS-Net based model which
relevant observation . .
makes n equally likely predictions
and the CRPS as its loss function.
A A A Al
CRPS(Y,y)=Eg|]Y —y| - 12X Eg|lY - Y | Brey & Eckel. 2020
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https://github.com/TheClimateCorporation/ensemble/blob/main/docs/crps-net.rst

o~

3/ tomorrow

Forecasting Precipitation

CONUS Precipitation Verification 1yr 51-Member Ensemble
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Summary

e Data driven models have numerous applications in Weather Industry, for instanc Tomorrow.io has a suite of
applications (DA, Nowcasting, Postprocessing)

e ML models are not the solution to all the problems

e The adoption of the ML approaches is changing the NWP: From modeling physical processes and
initialization to data driven models and their training

e The typical development cycle, R202R, for NWP is extremely long for the Machine Learning common
practices — Operational Innovation

e Considering the increasing number of observations and preliminary results, if and when purely ML weather
predictions based on observations will be possible?
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