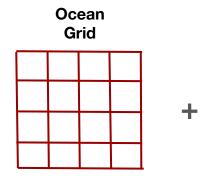
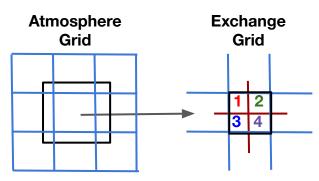
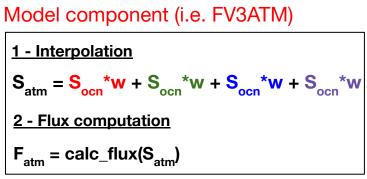
Towards an Exchange Grid Implementation within the UFS

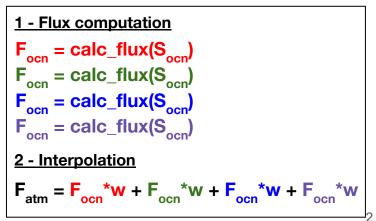

Ufuk Turuncoglu, Mariana Vertenstein, Denise Worthen, Bob Oehmke, Dominikus Heinzeller, Rocky Dunlap


> The CMEPS Mediator is developed collaboratively: NCAR, ESMF, NOAA/EMC, NOAA/GFDL

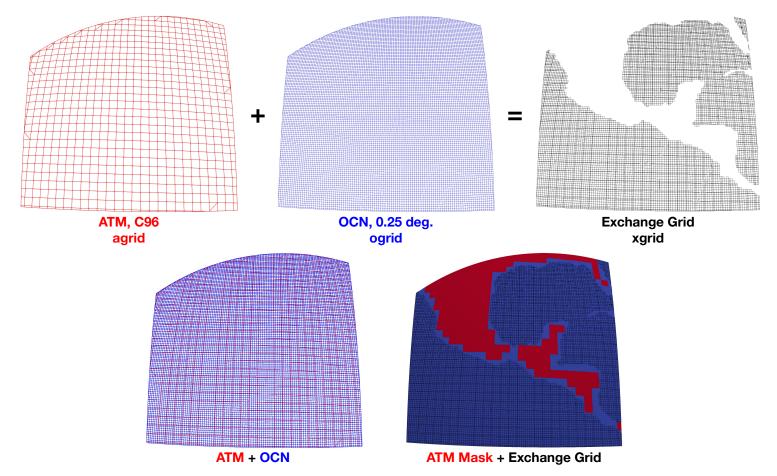
> > 21 July 2022

This work is supported by the UFS R2O project, Hurricane Supplemental, and National Science Foundation


Computing surface fluxes: component vs. exchange grid

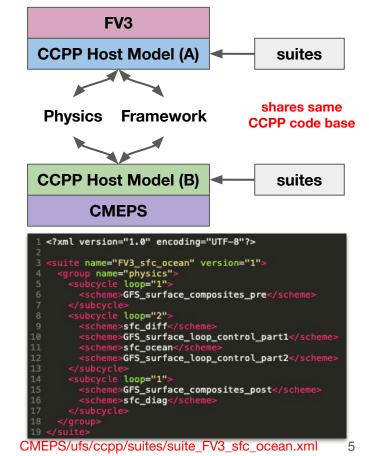


Fluxes (**F**) are computed at finest possible grid resolution with exchange grid


- Avoids computing fluxes using average of state (S) variable
- The flux computation could be easily done in the selected component grid (atm, ocn etc.)

Exchange grid

Exchange grid (0.25 deg. Ocean, subsetted over GoM)



Motivation for CMEPS Exchange Grid Implementation

- Computing surface fluxes on the exchange grid guarantee that fluxes are computed at the highest possible resolution regardless of the relative grid resolutions of the atmosphere and ocean
- Facilitate scientific experimentation
 - Runtime options to calculate fluxes on different grids: **atmosphere, ocean** and **exchange**
 - Different configurations of the model can be tested/validated to reveal best configuration for the given application
- Develop the infrastructure to support more tightly coupled configurations, such as cross-component implicit coupling and coupling that takes into account sub-grid scale heterogeneity at the surface (see [1] and [2] for description of the GFDL approach).
- Expand the community mediator (CMEPS) to support **a key data structure and coupling paradigm** currently used in systems outside of the UFS. Systems like GFDL's climate model and NASA's GEOS couple components via an exchange grid.
- Build on and continue a collaboration between GFDL, NCAR, and ESMF to develop CMEPS as a flexible coupler supporting a range of different coupling strategies.

Atmosphere-ocean flux calculation in UFS WM

- FV3 is responsible to calculate atmosphere-ocean fluxes using CCPP host model
- But exchange grid is constructed in the mediator component (CMEPS). This requires enabling atmosphere-ocean flux calculation in mediator
 - Existing atmosphere-ocean flux scheme in CMEPS can be used. This is used by NCAR CESM and also UFS data atmosphere specific configurations
 - Enable CCPP host model under CMEPS mediator to calculate atmosphere-ocean fluxes with the same way, which is done in FV3/CCPP.
 - In this case, very simple CCPP suite file can be used to calculate the fluxes

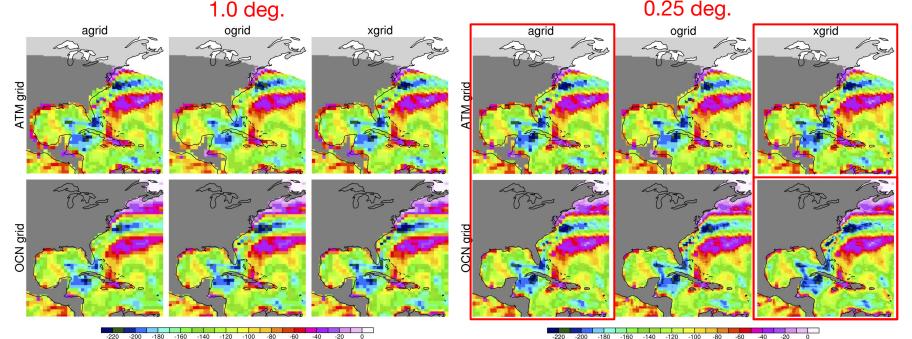
Setup and run the xgrid regression test (RT)

- As a part of the project a new RT is developed: *cpld_control_c96_noaero_p8_agrid*
 - The test uses *agrid* (atmospheric model grid) to calculate fluxes in mediator by default
 - It is based on existing three-component configuration, *cpld_control_c96_noaero_p8*
 - It runs the model 1 day by providing atmosphere-ocean fluxes from mediator
 - The mediator uses its internal CCPP host model to drive simple suite file
 - The suite file uses CCPP physics *sfc_ocean* scheme
- The default grid to calculate atmosphere-ocean fluxes can be changed simply by editing aoflux_grid parameter in the parm/nems.configure.cpld_agrid.IN
 - The parameter could get *xgrid* (exchange grid), *ogrid* or *agrid* as option
- The regression test can be run with ./rt.sh -k -n cpld_control_c96_noaero_p8_agrid
 - This will keep the run directory for future reference

Validation Runs

- The following simulations were performed on NCAR's Cheyenne platform
- In all simulations, CMEPS CCPP host model reads initial condition from INPUT/sfc* files

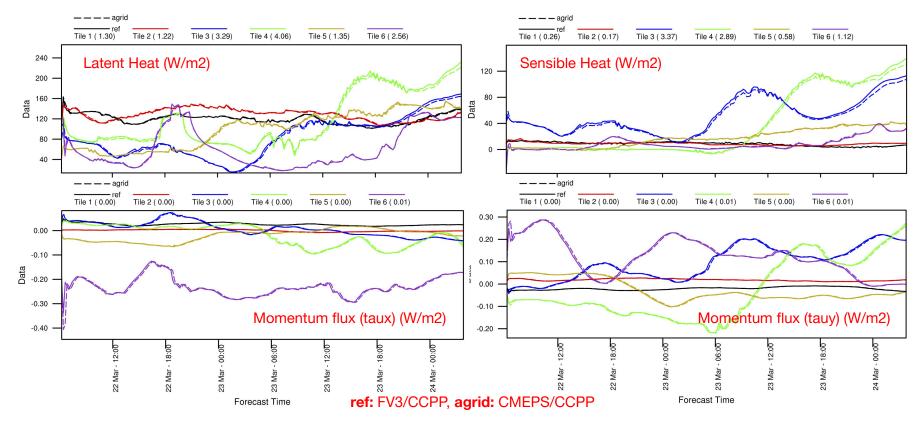
Run ID	Component Resolutions	Length	Description
REF_100*	A: C96 O/I: 1 deg.	35-days	Side-by-side run, FV3 computes its own fluxes
AGRID_100	same	35-days	CMEPS calculates fluxes on agrid and send to FV3
OGRID_100	same	35-days	CMEPS calculates fluxes on ogrid and send to FV3
XGRID_100	same	35-days	CMEPS calculates fluxes on <i>xgrid</i> and send to FV3
REF_025*	A: C96 O/I: 0.25 deg.	35-days	Side-by-side run, FV3 computes its own fluxes
AGRID_025	same	35-days	CMEPS calculates fluxes on agrid and send to FV3
OGRID_025	same	35-days	CMEPS calculates fluxes on ogrid and send to FV3
XGRID_025	same	35-days	CMEPS calculates fluxes on <i>xgrid</i> and send to FV3


* Additional 2-days simulation by enabling high temporal resolution mediator history output (every coupling interval, 720 s)

* In side-by-side runs (REFs) CMEPS calculates fluxes on agrid to make direct comparison with FV3

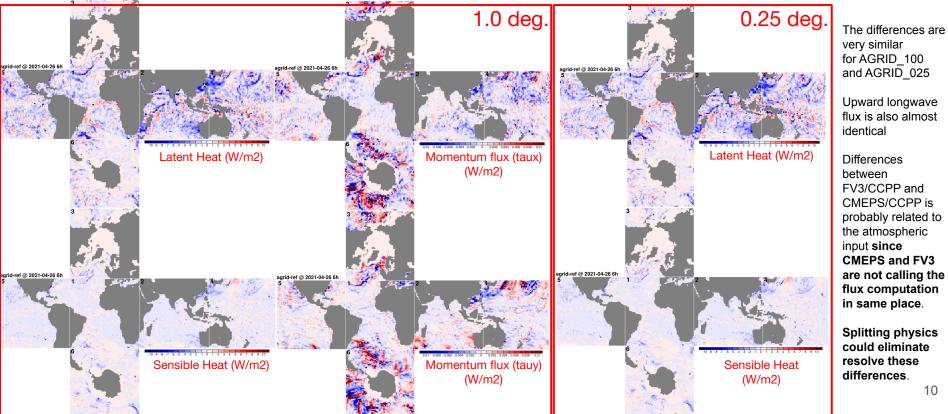
* All cases uses single coupling interval (slow coupling time step = fast coupling time step, 720 s) to write mediator history files in fast loop

Computing fluxes on different grid

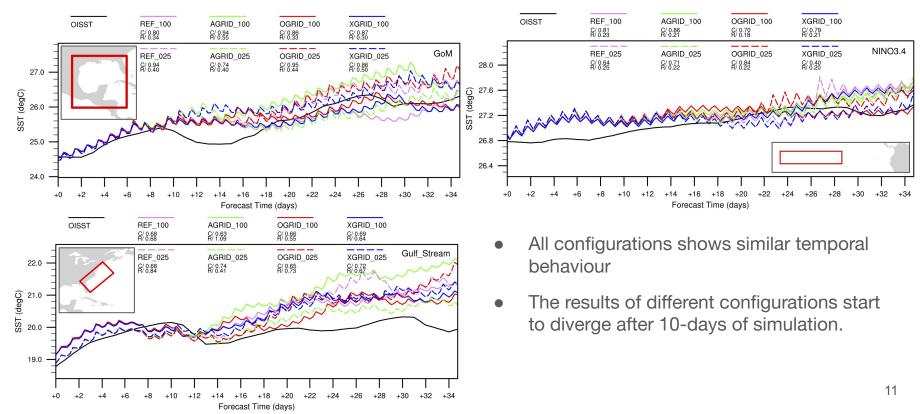

• Comparison of *Med_aoflux_atm_Faox_lat* and *Med_aoflux_ocn_Faox_lat* @ first coupling interval 1.0 deg. 0.25 deg.

Interpolation types: atm -> xgrid: 1st order except u and v, u and v uses 2nd order xgrid -> atm: 1st order xgrid -> ocn & ocn -> xgrid: 1st order

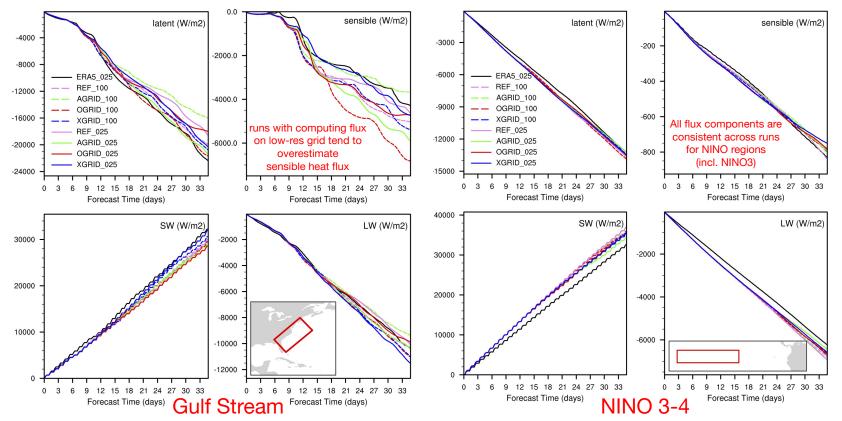
Side-by-side run comparisons (1)


• Results from *side-by-side* AGRID_100: single point in each tile (far from icy regions) + for 2-days

ref: FV3/CCPP, agrid: CMEPS/CCPP


Side-by-side run comparisons (2)

Results after 35-days side-by-side AGRID_100 and AGRID_025 simulations


Temporal evolution of SST on different regions

SST averaged over sub-regions (calculated using MOM6 output)

Accumulated Flux Components

Potential Future Development Steps

- Identify applications and configurations of UFS that would benefit from the exchange grid.
 - UFS application teams enable the exchange grid capability in their configurations and perform evaluations specific to the application.
 - Future proposals for application development (e.g., S2S) can leverage the exchange grid in their projects.
- Some improvements to the CMEPS-CCPP integration could simplify the design:
 - Split calls to CCPP physics by the UFS atmosphere into multiple phases
 - This would allows to computing atmosphere-ocean fluxes in the same place that is currently called under UFSATM. This might eliminate minor differences seen in the calculated fluxes.
 - Define CCPP as a external component
 - This could eliminate duplication of code in CMEPS and FV3 sides
 - Allows running CCPP in any grid/mesh (components transfer their data and grid information)
 - Extending CCPP to include I/O capability and rich metadata
 - The CCPP could be responsible for its own I/O routines to read initial conditions and write restart/history information
 - In the current design, the CCPP host model under CMEPS also includes I/O routines to enable CCPP restart capability
 - The CCPP metadata can be enriched to include information about fields required for restart

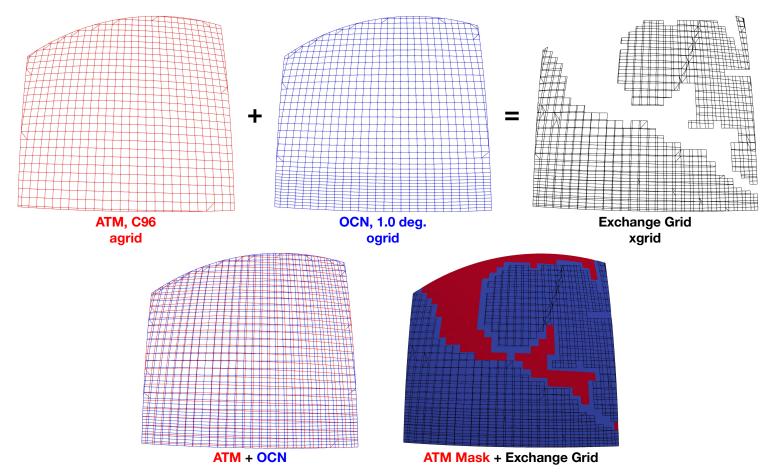
Backup Slides

ESMF/NUOPC Exchange Grid Support

• Creation:

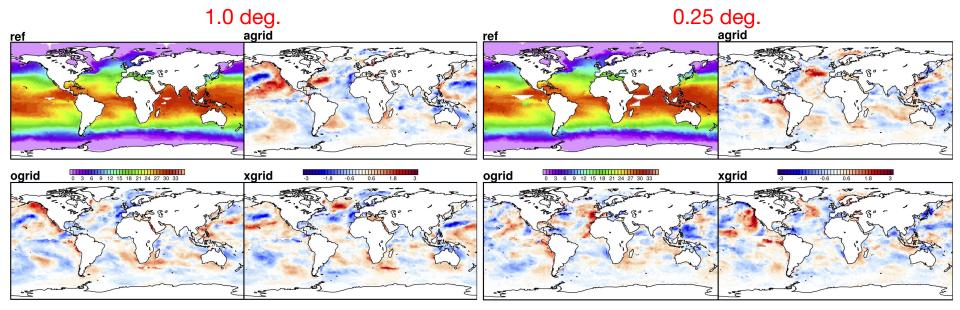
```
xgrid = ESMF_XGridCreate(sideAGrid=<list of grids>, sideAMesh=<list of meshes>,
sideBGrid=<list of grids>, sideBMesh=<list of meshes>,
Optional Grid and Mesh prioritization inputs,
Optional Masking inputs, ...)
```

• Regridding data to/from side Field to XGrid Field:


```
ESMF_FieldRegridStore(xgrid, ! Like the usual FieldRegridStore(), but with xgrid
srcField=<field built on side or xgrid>, dstField=<field
built on side or xgrid>, routeHande=rh, ! Output
routeHandle ...)
```

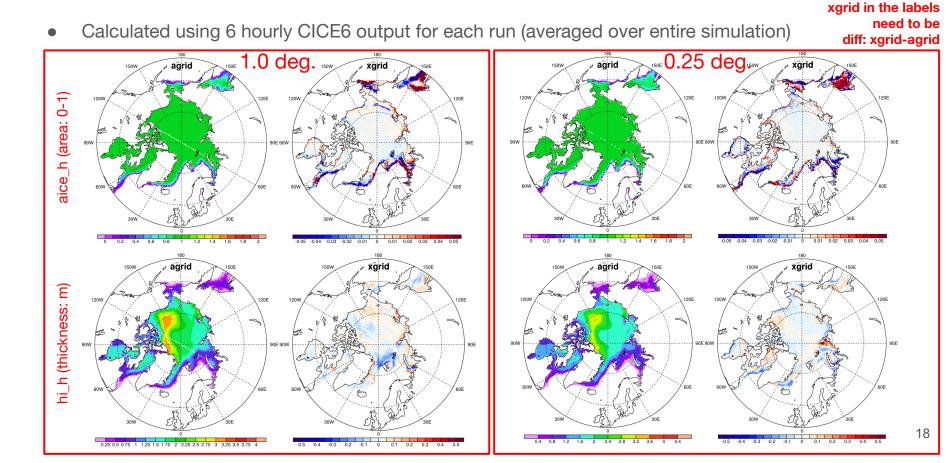
ESMF FieldRegrid(srcField, dstField, rh, ...) ! Apply routeHandle as usual

• Retrieve information:


```
ESMF_XGridGet(xgrid, area, centroid, ! Areas and centroids of XGrid cells
sparseMatX2A, sparseMatA2X, ! Sparse matrices
... and more ...)
```

Exchange grid (1.0 deg. Ocean, subsetted over GoM)

Spatial SST differences


• 1.0 and 0.25 deg. Ocean and difference after 35-days of simulation

The results indicates that there is no particular issue in implementation since all the configurations produces similar results except some spatial differences

As it also shown in temporal plots, agrid, ogrid and xgrid have similar temporal and spatial behaviour first week and then solutions start to diverge

Ice related variables (AGRID vs. XGRID)

