

NATIONAL ,

Moving Nest Implementation in the Hurricane Analysis and Forecast System (HAFS)

William Ramstrom^{1,2*}, Xuejin Zhang², Kyle Ahern^{1,2}, Sundararaman Gopalakrishnan²

¹ University of Miami Cooperative Institute for Marine and Atmospheric Studies

² NOAA Atlantic Oceanographic and Meteorological Laboratory

*Correspondence: William.Ramstrom@noaa.gov

Additional Collaborators

Thanks to the following people for their contributions to this project

- Bin Liu, IMSG/NOAA EMC
- Chunxi Zhang, IMSG/NOAA EMC
- Weiguo Wang, IMSG/NOAA EMC
- Zhan Zhang, NOAA EMC
- Avichal Mehra, NOAA EMC
- Lucas Harris, NOAA GFDL
- Rusty Benson, NOAA GFDL
- Joseph Mouallem, Princeton University

Moving Nest for Hurricanes

Moving Nest Overview

- Initial implementation of moving nest in HAFS using the FV3 dycore has been completed
- Similar functionality as moving nest in HWRF
- Global and regional configurations
- First moving nest in a global model

Hurricane Modeling

- Current global FV3 resolution is 13km over the globe
- To accurately model hurricanes, we need high resolution for areas with sharp gradients such as the eye and eyewall
- 1-4km for the hurricane core.
- Not feasible on operational timeframes over the globe with current computational facilities.

Moving Nest for Hurricanes

Moving Nest Overview

- High resolution nest to better capture small-scale processes in hurricanes
- Similar to nesting in HWRF
- Global and regional configurations
- First moving nest in a global model

Hurricane Modeling

- Current global FV3 resolution is 13km over the globe
- To accurately model hurricanes, we need high resolution for areas with sharp gradients such as the eye and eyewall
- 1-4km for the hurricane core.
- Not feasible on operational timeframes over the globe with current computational facilities.

Moving Nest Features

• Accurate

- Track more accurate than 2021 HWRF & HAFS
- Max Wind Speed improvements most lead times

• Fast

- Runtime Overhead 3%-7% compared to static nest
- Scales with forward motion of storm
- HWRF overhead is ~15-20%
- Flexible
 - Global and Regional
- Robust
 - 2020-2021 retrospective testing, stress tests
- Configurable
 - Enabled via namelist options

Verification diagrams courtesy of Bin Liu/EMC

Regional and Global Configurations

Flexible Configurations

- Global cubed sphere
- Regional
 - Storm-centered
 - Basin scale
- Ocean Coupling
- Internal tracker

Shifting of Atmospheric and Surface Fields

Model Variable Motion

- Prognostic
 - T, delz, pressure, u & v wind, humidity, tracers
- Physics
 - 56 separate variables
 - 1D vectors
- Terrain and static surface fields
 - High resolution
 - Nest resolution from files
- Grid distances, areas, Coriolis, etc.
 - Calculated at 64 bit precision from lat/lons

Simul Sat Hour 0 Larry

Performance Optimization

Moving Nest Features

- NWP can always exploit more CPU resource for higher resolution in horizontal, vertical, timestep, forecast length, ensemble members
- Leveraged several existing fast procedures
 - Field shifts between processors
 - FMS halo infrastructure from GFDL for shifting prognostic and physics fields
 - Field shifts on same processor
 - Fortran intrinsic EOSHIFT for efficient shifting of fields— compiler developers ensure this is fast
- Profiling to meter subsections
- Optimize algorithms in slower subsections
- Overhead went from >30% to <7%

Real Time Runs

Real time Experiments

- Begin August 1, 2022
- 2 regional configurations
- Ocean coupling, VI, DA
- EMC real time
- HRD real time
 - Storm-centered
 - Thompson microphysics
 - Basin configuration possible
- Available on https://storm.aoml.noaa.gov

Initial Operational Configuration

- Code freeze March, 2023
- Operations for summer, 2023

Future Work

- Multiple Moving Nests
 - Regional and Global
- Flexible Refinement Ratios
 - 4X and higher
 - FV3 dycore permits odd and even multiples
- Edge crossing for global cubed sphere

Summary

 \bullet

Moving nest functionality for atmospheric, surface, and physics variables is now integrated into FV3 dynamic core

- Track accuracy statistics beating 2021 HWRF and HAFS
- Intensity accuracy statistics from cold-start competitive with warm-start 2021 HWRF and HAFS
- Very efficient Runtime overhead 3%-7% compared with 15%-20% for HWRF
- Aiming to run 2 regional configurations in real time experiments this summer
- Planned to be operational in Summer, 2023

Acknowledgements

This work was funded in part by:

- NOAA Award NA19OAR0220186, titled "Accelerate development of operational capability for multiple high resolutions moving nest."
- NOAA FY18 Hurricane Supplemental IFAA 1A.4a, 3A.1, 3A.2
- NOAA/NWS/OSTI UFS R2O Hurricane subproject
- NOAA Hurricane Forecast Improvement Project.