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<X ”‘fttm 2021-22 HWT Spring Forecasting Experiments

lorman, Oklahoma

SFEs are five-week experiments jointly organized and facilitated by SPC and NSSL

Goals include:

o Testing & evaluation of emerging technologies for severe weather prediction

e Accelerating R20; developing & strengthening O2R pathways

o Facilitating experiments to: optimize deterministic and ensemble CAMs informing Unified
Forecast System Development [using Community Leveraged Ensemble (CLUE) framework].
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SFE 2021: Deterministic Flagships

[ Goal: Gauge progress for severe weather predictions for a single deterministic model from
each SFE contributor relative to HRRRv4.
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UH & Reflectivity (0000 UTC) Environment (1800 UTC; T, Td, & CAPE)
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<« T SFE 2022: Deterministic Flagships

Norman, Oklahoma

[ Goal: Gauge progress for severe weather predictions for a single deterministic model from
each SFE contributor relative to HRRRvA4.
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Mean Ranking for Cases with All Model Data (12)

o

Results: Mean rankings
:> - HRRRv4, RRFSp1, & RRFSp2 very similar
- GFDL and NSSL FV3 clearly the worst
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Results: Rankings distribution iZ
- HRRRv4 most frequently rated #1 <: 20
- GFDL followed by NSSL-FV3 most frequently .
rated worst 5

Tentative conclusion: RRFS prototypes approaching
utility of HRRRv4, and relative skill improved from 2021
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Norman, Oklahoma

[ Goal: Gauge progress for severe weather predictions for 00Z initialized CAM ensembles
relative to HREF.
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SFE 2021: 00Z CAM Ensembles
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Results

HREF performs best w/ GSL RRFS
(HRRRDAS ICs) a close second.
Participant comments:

o HREF and GSL RRFS
predicted locations of severe
weather very accurately.

o HREF and RRFS Cloud had
largest spread or broadest
coverage of probabilities.

o MAP runs “too aggressive”

HREF continues to be formidable
baseline.
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SFE 2022: 00Z CAM Ensembles

[ Goal: Gauge progress for severe weather predictions for 00Z initialized CAM ensembles

relative to HREF.
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Changes from SFE2021
- Comparisons were

“blind”
- Rankings instead of
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Norman, Oklahoma

00Z CAM Ensembles: Dates w/ no missing datasets
9 cases where all 5 ensembles were available

4- :> - HREF and RRFSp2e average ranking very similar with
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Norman, Oklahoma

0 Goal: Provide comprehensive evaluation of environment and storm attribute fields in RRFSp2e compared to

HREF.
00Z HREFv3 H R E F 2022-05-09 18:00 00Z RRFSp2e RR F S p22§2-05-09 18:00 ObsO bS (2 D RT Mzﬁé5-1)9318:9 fo r CAP E )

Participants were asked: For the following

ensemble mean environmental fields (T, Td,
S A & CAPE) and UH, please rate the

el | performance of RRFSp2e relative to HREF

Temperature
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S| for the time periods 17-20, 21-00, & 01-04Z.
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S This was the 1% time that ensemble mean
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Rate RRFSp2e relative to HREF Temperature: HREF was
2 = Much better, 1 = Better, 0 = About the same, -1 = Worse, -2 = Much worse clearly better: likely result

of cool bias in RRFSp2e

= 0.50
e N = 16 cases that.wals most prevalent
& " earlier in the forecast.
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L c .
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- of dry bias in HREF that
0.00 A ' ——— — was most prevalent earlier
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UH: Differences were
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<1~  SFE 2021: GEFS vs. SREF Days 2 & 3

[0 Goal: Evaluate severe weather fields (e.g., Td, MLCAPE, CAPE/Shear combined probabilities, & STP) and calibrated thunder and
severe weather probabilities to gauge GEFS readiness to replace SREF.
2 2
. GEFS Day 2
better

. GEFS Day 3

better

-

Overall, GEFS
performed as well as
SREF for most severe
weather fields
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« J( Summary

0 It appears that significant progress has been made in the last year.

0 HWT evaluations indicate that UFS-based systems are generally performing comparable to the operational
systems they will replace or subsume.

0 Important caveats/limitations: Limited sample & objective statistics not computed yet. Also — initial
operational versions of FV3 haven’t been received well.

0 Warn-on-Forecast team at NSSL is getting unacceptable results with FV3 (big problem with spurious storms
at model initialization and unrealistic storm characteristics).

2021 SPC forecaster survey

10

; ﬁ ‘ : * "SPC forecasters are extremely concerned and skeptical

8 i about moving to an FV3-based CAM ensemble to replace
|

- the current HRRR and HREF

Overall Usefulness for Forecasting
(Scale 1-10)
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00Z CAM Ensembles: Dates w/ RRFS MixPhys missing
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