

Developing Hurricane Analysis and Forecast System: Initial Operational Capabilities and Future Priorities

Xuejin Zhang¹, Zhan Zhang², Avichal Mehra²,

Vijay S. Tallapragada², Frank D. Marks, Jr.¹, S. G. Gopalakrishnan¹

¹ NOAA/OAR/AOML, ² NOAA/NWS/NCEP/EMC

Supported by: HFIP, Hurricane Supplementals, UFS-R2O, and WPO projects

Background

HAFS Overview

Adopted from Bin Liu's workflow

HAFS Current Status

Workflow

- Configurable moving nest capability
- Optional vortex initialization
- Configurable storm-region and/or entire domain data assimilation
- Post-process both parent and nest domain
- Research and forecast products

Moving nest

- Storm following nest
- Full physics nest motion
- Auto storm tracking
- Namelist option for moving nest
- Optimized running moving nest

Ocean/Wave coupling with moving nest

- HYCOM ocean coupling with HAFS parent
- Downscale HAFS parent SST for nest domain
- One-way coupling with WW3: generate HAFS/wave IC/BC from GFS/wave

4

HAFS Current Status

Utilities for DA and VI

- Interpolating/remapping functions
- Merging domains
- Interface to Data Assimilation
- Vortex consistency
- First Guess at Appropriate Time (FGAT)

Data Assimilation

- Storm-region inner-core DA
- DA cycling for entire parent domain for the coarser res. (~6km)
- 3DEnVAR with GDAS (or HAFS ensemble)
- Additional obs. Assimilated
 - Tail Doppler Radar (TDR)
 - Next Generation Weather Radar (NEXRAD)
 - Drifting corrected Dropsondes
 - Metar observations
 - GOES-16 AMVs
 - Test CIMSS Rapid scan winds

Infrastructure

- WriteGrid component for multiple domains
- FMS support telescopic & multiple nests

HAFS Development Priorities: before IOC

- Merge HAFS developments back to ufs-weather-model
 - Moving nest related developments
 - Static and moving nest coupling
 - WriteGrid component support for moving nest
 - Merge GSI FGAT capability back to GSI master
- Workflow
 - MET-TC based verification package into workflow
 - Optimized workflow
- Science Evaluation
 - T&E for each of new components and configurations
- Real-time HFIP demo
 - T&E for each of new components, configurations and other basins
- Physics optimization in current suite
- HAFS Pre-processing
 - Generate a regional ESG grids for moving nest configuration
 - Generate IC for regional ESG parent and nest
 - Optimize ICs for Ocean and Waves

HAFS Development Priorities: after IOC

• Moving nest

- Multiple storms
- Flexible nesting refinement

• Data assimilation

- New data ingestion including all-sky radiance
- 4DEnVar
- Atmosphere/Ocean coupled DA
- Multi-scale DA
- JEDI infrastructure
- JEDI transition

Physics evaluation, transition & development

- PBL for TC application
- NOAH-MP evaluation
- saSAS upgrade, transition, & evaluation
- Microphysics parameterization upgrade

Ocean model transition

- Develop MOM6
- Prepare HYCOM to MOM6 transition

HAFS Development Priorities: Future Coupling

HAFS Development Priorities: future challenges or innovation

• Moving nest

• Global moving nest

• Data assimilation

- Efficiency vs. accuracy
- Computer technology advancement
- Atmosphere/Ocean coupled DA: strongly vs. weakly
- All-sky radiance: CRTM vs. RRTMG
- New DA methodology: scale-aware, particle filter, etc.
- DA and physics parameterizations

• Observations

- New observations
- Observation strategy

• Products

- Ensemble products
- Product fidelities

• Physics

- Al and physics parameterizations
- Sub-kilometer physics
- Physics interactions

Summary

- HAFS is ready for 2022 hurricane season real-time HFIP demo
- HAFS is aiming to initial operational implementation in 2023 hurricane season
- HAFS development and operational implementation will prioritize the following aspects:
 - Moving nest refinement
 - Multiple moving nests
 - $\circ \quad \text{New DA methodologies and data}$
 - New physics for high-resolution
 - Synchronize development to NOAA's Unified Forecast System (UFS)

Dare to rethink! Dare to be innovative! Dare to be wrong!