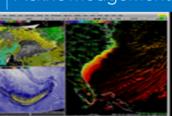
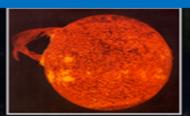


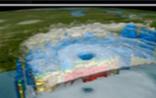
NOAA
National
Weather
Service


Expanding Community UFS Land Model Development Through Advancing Land Component and Land Data Assimilation Capabilities

UIFCW Workshop, July 21, 2022


Michael Barlage, NOAA Environmental Modeling Center NOAA Environmental Modeling Center UFS Land Working Group Co-lead

Acknowledgements: EMC Land Team; UFS Land WG



Unified Forecast System

- The Unified Forecast System (UFS) is a community-based, coupled, comprehensive Earth modeling system. It is designed to support the NOAA Weather Enterprise and to be the source system for NOAA's operational numerical weather prediction applications.
- The UFS is organized around applications. Each application has a forecast target. The UFS numerical applications span local to global domains and predictive time scales from sub-hourly analyses to seasonal.
- Application Teams (subset)
 Short-Range Weather (SRW): Atmospheric (and land) behavior from less than an hour to several days Medium-Range Weather (MRW): Atmospheric (and land) behavior out to about two weeks Subseasonal-to-Seasonal (S2S): Atmospheric and ocean (and land) behavior from about two weeks to about one year
- Working Groups: Chemistry, DA, Dynamics, Ensembles, Marine, Physics, Post-Proc, LAND

Inaugural UFS Land Advisory Panel

- Brent Lofgren (NOAA/GLERL)
- Trey Flowers (NOAA/NWC)
- Clara Draper (NOAA/PSL/CIRES)
- Andy Fox (JCSDA)
- Sujay Kumar (NASA/HSL)
- Paul Dirmeyer (GMU)
- Joe Santanello (NASA/HSL)
- Elena Shevliakova (NOAA/GFDL)
- David Lawrence (NCAR/CGD)
- Tanya Smirnova (NOAA/GSL/CIRES)
- Guo-Yue Niu (U. Arizona)
- Fei Chen (NCAR/RAL)
- Zong-Liang Yang (UT-Austin)
- Zong Elang rang (or 7.03tm
- Xiwu Zhan (NOAA/NESDIS)
- Maoyi Huang (NWS/OSTI)
- Michael Ek (NCAR/DTC) Co-Lead
- Michael Barlage (NOAA/EMC) Co-Lead

- Hydrology

Land Data Assimilation

Land-Atmo Interactions

Climate Development

NWP Development

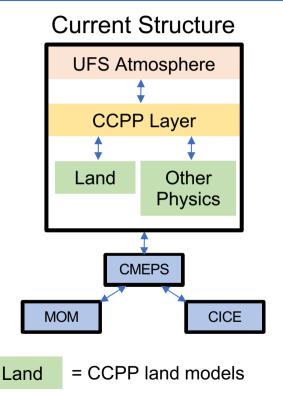
- Land Satellite Data

Working Group open to all interested: michael.barlage@noaa.gov

UFS Land Working Group and Workshop

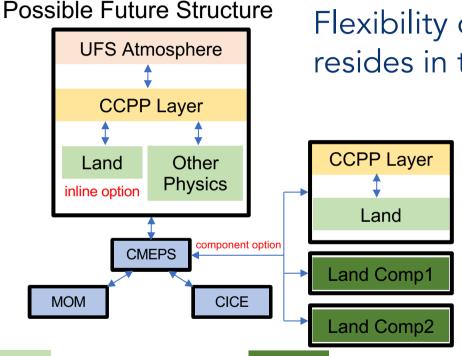
- Currently WG meetings organized around centers of interest quarterly
 - community open meetings where we discuss status of UFS Land Component(s) and issues relevant to the land model in general (EPIC, Infrastructure, Interactions (apps/physics), Coastal); invited speakers to enhance community usage of UFS (e.g., App Teams)
 - community-focused meeting designed to communicate modeling needs/performance and new advances from the community (lightning-style talks)
 - land "steering committee" meetings (long-term planning)
- UFS Land Workshop (May 25-26, 2021)
 - developing design requirements for UFS land models
 - identifying priorities of land model development and metrics
 - better representations of key processes for capturing UFS land-atmosphere-ocean interactions
 - next 2 to 5 years timeframe

UFS Land – Current Infrastructure



- Current land models (Noah, Noah-MP, RUC) reside inside the atmospheric model (tightly coupled)
- These models are essentially modules/subroutines within the CCPP (Common Community Physics Package) repository
- Currently, CCPP modules are assumed to be 1D column models – no horizontal communication
- History and restarts are controlled by the atmosphere

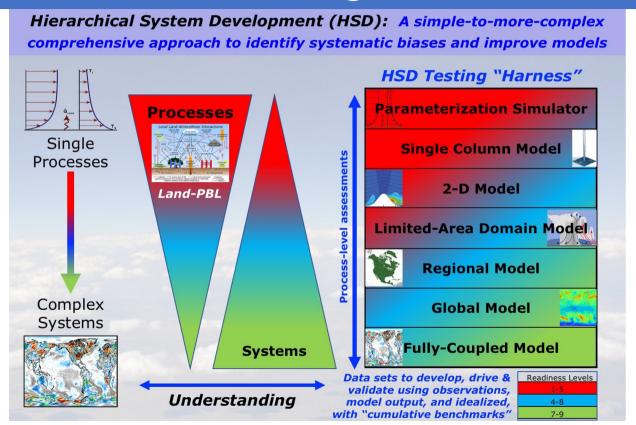
UFS Land – Future Infrastructure



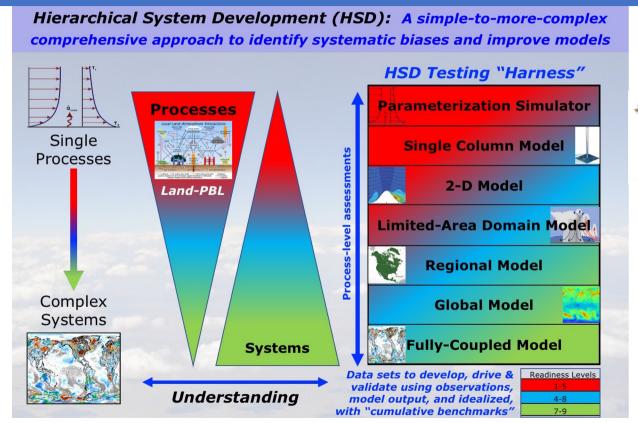
Land

= CCPP land models

Flexibility on where the land model resides in the system


- •inline with the atmosphere
 - advantage: faster physics/coupling
- •as a separate component
 - advantage: land model testing within a well-designed framework (i.e., with a data atmosphere)
 - advantage: evaluating fluxes across interface
- = component land models, including lakes, routing, etc.

Land


Goals:

- remove the barriers to participation in the development and advancement of UFS [Land]
- plug into the process with simpler (but relevant) models that have fewer dependencies and can run with minimal resources

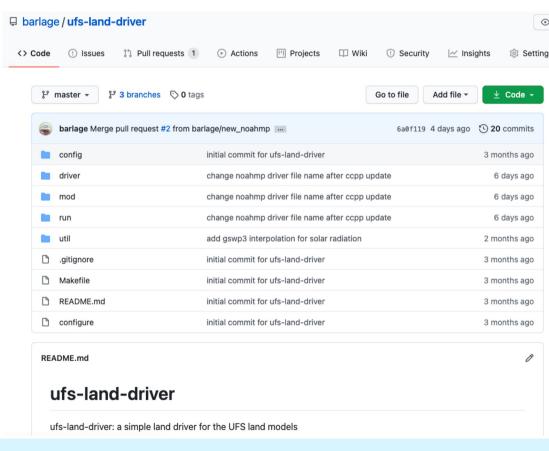
l've got an idea. How do I plug-in?

Exploring model output:

https://registry.opendata.aw s/noaa-ufs-s2s/

A repository of UFS Global Coupled Model Development Output

- Land model process testing and evaluation
 - Essentially non-existent in UFS land models (and most other land models)
- Land model testing and evaluation
 - Essentially land model drivers: GLDAS, NLDAS, HRLDAS, LIS
 - These are more useful if connected directly to code used in UFS/ops repositories
- Single column model (CCPP-SCM)
 - Very useful for efficient testing of land-atmosphere coupling
 - Rapid L-A sensitivity tests of land model parameters and physics
- Global/regional land-atmosphere SRW or MRW App cases
- Global coupled cases

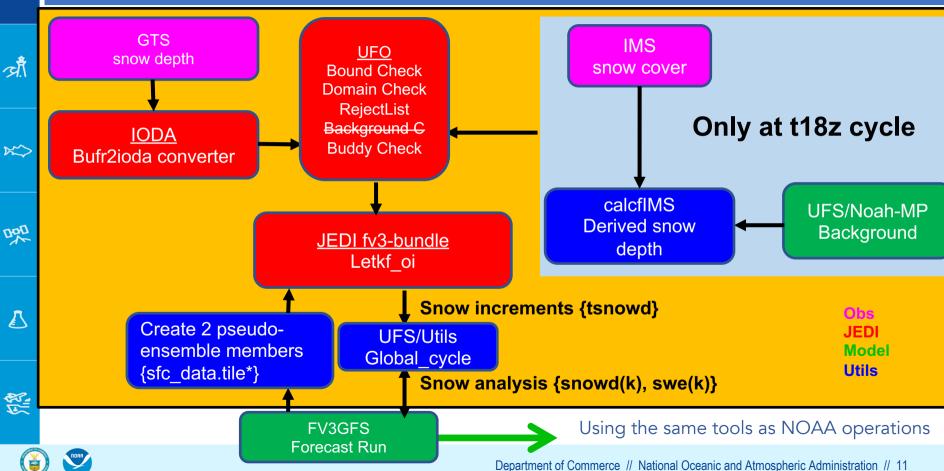

- औ
- Physics repository
 - Designed for ease-ofuse

UFS land driver that

plugs directly into CCPP

- Graduate/
 Undergraduate student laptop capability
- Two dependencies: Fortran compiler and NetCDF library

github.com/barlage/ufs-land-driver



ž

Land Data Assimilation Framework

UFS Land Workshop Summary

• Resources are needed to support UFS land physics and UFS-JEDI land data assimilation tools that contribute to a standardized and automated hierarchical development approach and provide a distribution mechanism to the UFS land community.

Outstanding Land Infrastructure Issues

 A challenge with multiple physics options: need well defined requirements between physics schemes

 Consistency between land model coupling (or fractional grid components) to the PBL scheme

• Flexibility with PBL scheme (K/TKE-EDMF, MYNN, etc.)

Need for more coordination with PBL group

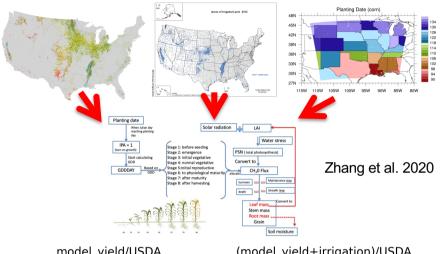
 Current land models within CCPP are not modeling "systems"; they have no self-contained history and restart capabilities

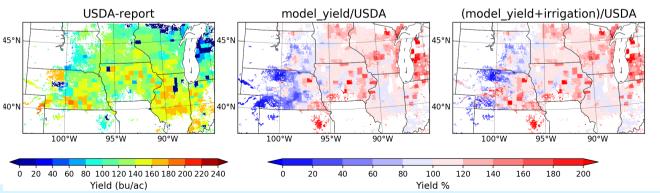


明

UFS Land – Gaps: Urban Modules

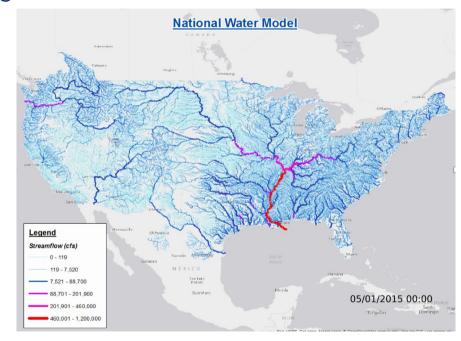
- All current UFS land models have very crude representation of urban areas
- As horizontal and vertical resolutions increase, more sophisticated representation of urban processes become necessary





UFS Land – Gaps: Agriculture Modules

- **À**
- High resolution information of crop types, irrigation and management
- Potential for providing countylevel information to agriculture stakeholders



UFS Land – Gaps: Hydrology and Lakes

- No lake model running in regional or global models
- Options being developed
 - FLake in CCPP
 - CLM lake model being added
 - FVCOM for Great Lakes
- No reservoirs or management
- No routing module means link between column land surface model and ocean model does not exist
 - Current JTTI project to connect UFS SRW configuration (RRFS) to National Water Model
- Crude treatment of groundwater

明

UFS Hierarchical Testing/Evaluation Gaps

- Need common evaluation capabilities throughout hierarchical development, METplus is the obvious choice
 - o discussions ongoing to add land-specific evaluation to METplus
 - o streamline community contributions (e.g., observations)
- UFS Metrics Workshop was an important step toward elevating landspecific metrics, moving beyond those driven by atmospheric priorities
 - soil moisture/temperature, turbulent fluxes, coupling metrics, snow/streamflow

UFS Land Workshop Summary

- Resources are needed to support UFS land physics and UFS-JEDI land data assimilation tools that contribute to a standardized and automated hierarchical development approach and provide a distribution mechanism to the UFS land community.
- More comprehensive land-related verification needs to be added to UFS evaluation and verification packages, including land process and land-atmosphere coupling metrics.

Community Engagement and Collaboration

- Provide clear, defined hierarchical path from research to operations
 - Involve both operational-priority "super" metrics and land process metrics
 - Are land process metrics stable throughout the hierarchical path?
- Increasing collaboration with the community
 - Grows organically with a well-designed Hierarchical Testing and Evaluation Framework
 - Need to give the community a core set of tools and cases to facilitate onboarding
 - ufs_land_driver is one of those tools (as is CCPP-SCM)
- Get onboard...not only running the UFS, but developing as well

UFS Land Workshop Summary

- Resources are needed to support UFS land physics and UFS-JEDI land data assimilation tools that contribute to a standardized and automated hierarchical development approach and provide a distribution mechanism to the UFS land community.
- More comprehensive land-related verification needs to be added to UFS evaluation and verification packages, including land process and land-atmosphere coupling metrics.
- Clear communication needs to be established with the research community to provide requirements and restrictions imposed on land physics and land data assimilation for transition to the operational NWP setting. A central location with priorities of known model deficiencies with example cases should be established.
- Land research to operations transition projects should be required to use the UFS
 hierarchical framework, including both testing and evaluation, beginning with land-only
 and progressing to coupled-model simulations using standard test cases and preexisting testing and evaluation tools.

