

NATIONAL WEATHER SERVICE Toward Initial Operational Capability: Progresses, Challenges, and Issues in Developing and Improving Hurricane Analysis and Forecast System (HAFS)

Zhan Zhang¹, Xuejin Zhang,² Bin Liu^{1,3}, Avichal Mehra¹, Vijay Tallparagada¹ S. Gopalakrishnan², Frank D. Marks, Jr²

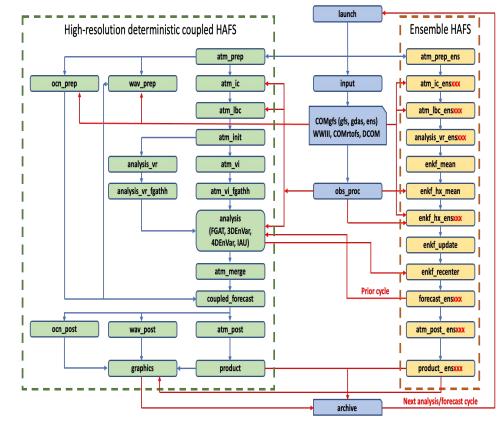
> ¹NOAA/NWS/EMC, MD, USA ²NOAA/AOML/HHRD, Miami, Florida, ³IMSG

Hurricane Modeling Team, NCEP/EMC AOML/HRD, GFDL, ESRL/GSL, ESRL/NESII, OFCM/AOC, NCAR/DTC, NCEP/NHC

Unifying Innovations in Forecasting Capabilities Workshop, College Park, MD, July 18-22, 2022

Acknowledgement to HAFS model active developers

Atmospheric model dynamics/configurations/workflow NCEP/EMC Avichal Mehra, Bin Liu, Dusan Jovic, JungHoon Shin,Vijay Tallapragada, Biju Thomas, Jun Wang, Zhan Zhang AOML/HRD Kyle Ahern, Ghassan Alaka, S. Gopalakrishnan, William Ramstrom, Xuejin Zhang, DTC Evan Kalina, Kathryn Newman, Mrinal Kanti Biswas, Linlin Pan GFDL Rusty Benson, Lucas Harris, Timothy Marchok, Joseph Mouallem	Ocean/Wave coupling through CMEPS NCEP/EMC Maria Aristizabal, Matthew Masarik, Jessica Meixner, John Steffen AOML/HRD Lew Gramer AMOL/PhOD Hyun-Sook Kim NRL/ESMF Rocky Dunlap, Dan Rosen, Gerhard Theurich, Ufuk Turuncoglu,	Data Assimilation NCEP/EMC Li Bi, Ting Lei, Xu Li, Daryl Kleist AOML/HRD Jason Sippel, Sarah D. Ditchek OU Xu Lu, Xuguang Wang UM/CIMAS Altug Aksoy, Dan Wu UMD Joseph Alan Knisely, Kenta Kurosawa, Jonathan Poterjoy SUNY/U at Albany Ryan Torn, Eun-Gyeong Yang
Model Pre- and Post-processes	Atmospheric Physics	Verification/Evaluation
NCEP/EMC Hui-Ya Chuang, Bantwale Enyew, Qingfu Liu, Yonghui Weng, Chuan-Kai Wang, Wen Meng, Lin Zhu	NCEP/EMC Jongil Han, Xu Li, Chunxi Zhang, Weiguo Wang, Fanglin Yang AOML/HRD Andrew Hazelton, Xiaomin Chen	NCEP/EMC Olivia Ostwald, Jiayi Peng NHC Michael Brennan, Ben Trabing, David Zelinsky



- HAFS is one of the UFS-R2O projects under UFS (Unified Forecast System), focusing on transitioning tropical cyclone modeling research to operation
- HAFS has been running in real time for three years (2019-2021), Initial Operational Capability (IOC) is planned in 2023, replacing HWRF/HMON

HAFS Development Status, 2022

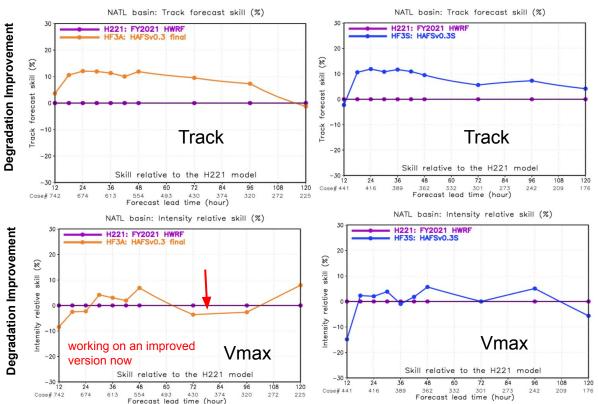
- Reproduced 2021 real-time experiment (HAFSv0.2A) results with latest GFS dynamic/physics code base
- Developed moving nest capability
- Implemented CMEPS based HYCOM coupling for moving nest
- Developed DA_tool for grids interpolation
- Implemented vortex initialization capability
- Implemented 6-hrly cycle DA system for storm-region or entire domain
- Post-process: output both parent/nest domain, all HWRF/HMON products including model satellite imagery
- Added all above components to HAFS workflow

HAFS IOC, Two Configurations

HAFSv1.0	Domain*	Resolution*	DA/VI	Ocean/Wave Coupling	Physics	Basins
Config. 1	Storm-centric with one moving nest, parent: ~81x81 degree, nest: ~12x12 degree	Regional (regular Gnomonic), ~6/2 km, ~L81, ~2 hPa model top	VI and DA	Two-way HYCOM, one-way WW3 coupling for NHC AOR	Physics suite-1	All global Basins NHC/CPHC/JTWC Max 7 Storms Replace HWRF
Config. 2	Storm-centric with one moving nest, parent: ~81x81 degree, nest: ~12x12 degree	Regional (<mark>ESG</mark>), ~6/2 km, ~L81, ~2 hPa model top	Adaptive VI and/or DA (TBD)	Two-way HYCOM <mark>No Wave</mark>	Physics suite-2	NHC/CPHC Max 5 Storms Replace HMON
HAFS Domains HAFS Lat 21 NPA HAFS Lat 21 NPA HAFS Lat 21 PA HAFS Lat 21 PA HAFS Lat 2 NPA HAFS LAT 2 NPA HA						
Image: A state of the stat						

Two Corresponding Model Physics Suites

	Suite 1	Suite 2
Cumulus Convection (Shallow & Deep)	sa-SAS: Positive definite mass flux; Stochastic convective organization; Optimization for CAPE	sa-SAS: Positive definite mass flux; Stochastic convective organization; Optimization for CAPE, TC-specific tuning
Surface Layer	GFS: Sea spray, optimization	GFS: Sea spray; optimization, TC-specific. tuning
PBL	Modified sa-TKE-EDMF: Positive definite tracer advection; TC-Specific tuning	Modified TKE-EDMF: Positive definite tracer adv.; optimization, TC-Specific tuning
Gravity Wave Drag	Orographic/Convective: On/Off	uGWP.v1 (TBD) (may use updated GFSV16)
Land Surface Model	Noah LSM	NOAH MP and VIIRS veg type
Microphysics	GFDL MP	Thompson MP (requires ~10% more resources)
Radiation (LW & SW)	RRTMG (30 min)	RRTMG (30 min)



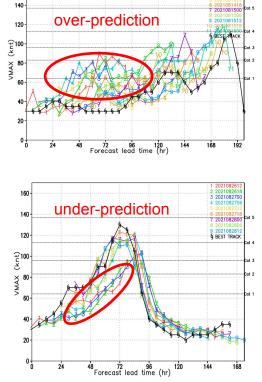
Comparison of track/intensity forecast skills (HAFSs vs HWRF) North Atlantic, 2020-2021

HF3A

Improvement of track/intensity forecast skills (HAFS vs HWRF)

- H221: Operational HWRF
- HF3A: HAFS configuration 1
- HF3S: HAFS configuration 2
- Two year retrospective runs: 2020-2021 NATL
- HF3A and HF3S track forecasts are ~8-10% more skillful than HWRF at almost all forecast lead times, except for HF3A at day-5
- HF3A intensity forecast skills are mixed/comparable with HWRF, while HF3S is about ~7% more skillful than HWRF between 18 -108 h

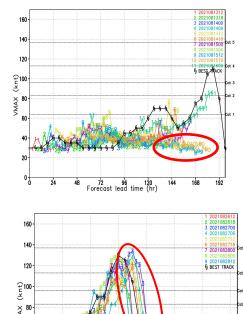
HF₃S


Comparison of Composite Vmax forecasts (HAFSs vs HWRF)

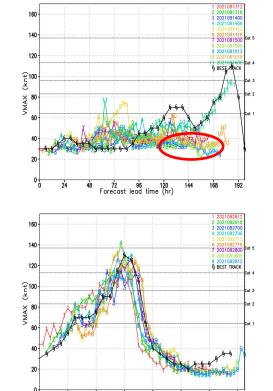
202108131

202108140

Hurricane Grace 2021, Both HAFSs improved over intensification, but missing few RI cycles


Hurricane Ida 2021, Both HAFSs Improved RI intensity forecasts, HF3A had intensity phase shift issues due to landfilling timings

NATIONAL WEATHER SERVICE

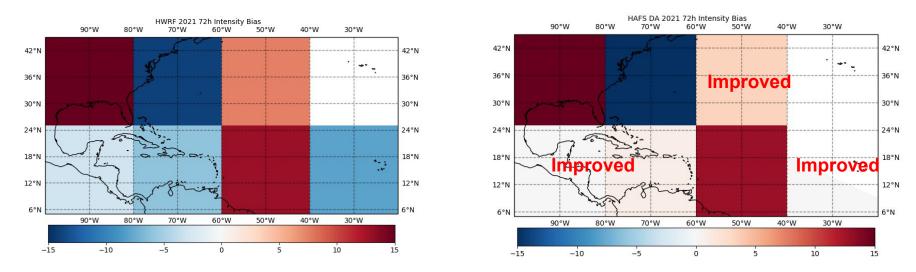

HWRF

160

8 72 96 Forecast lead time (hr)

HF3A

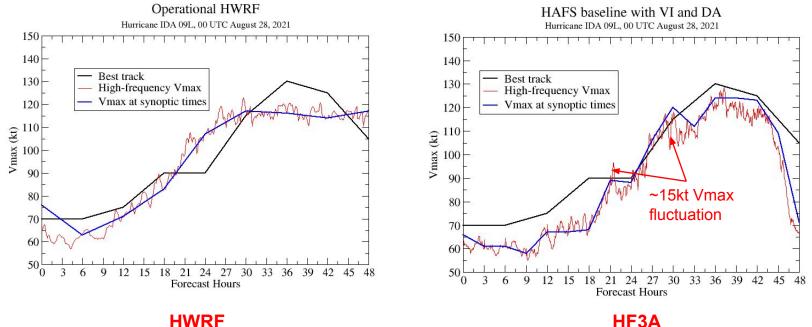
8 72 96 Forecast lead time (hr 120


144

HF₃S

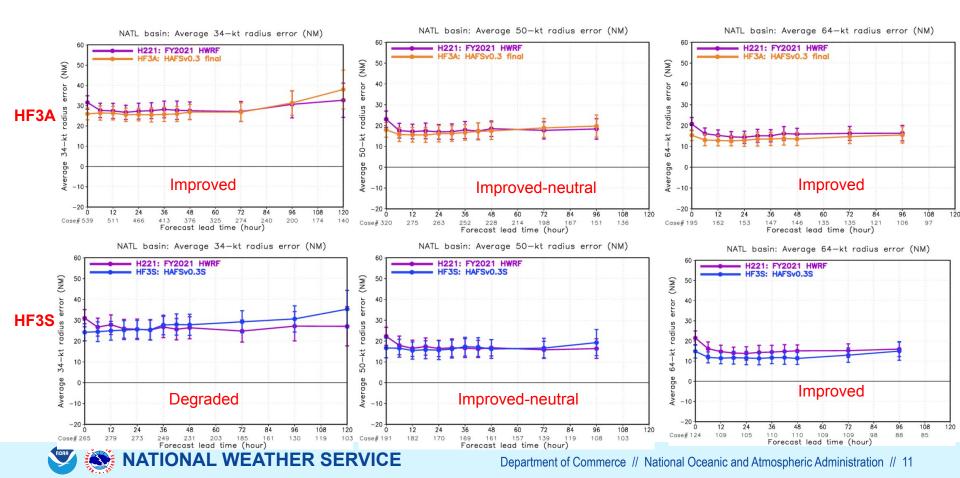
Spatial Intensity Forecast Error Variability

HWRF


HF3A

Samples are based on Hurricanes Grace 07L, Henri 08L, Ida 09L, Larry 12L, Peter 16L, Sam 18L Will re-evaluate when more samples are available.

Courtesy of George Alvey


Comparison of High Frequency Vmax

HWRF

NATIONAL WEATHER SERVICE

Comparison of storm structure forecast errors (HAFSs vs HWRF)

Challenges ahead

- Improve runtime to fit operational time window
- Improve two physics suites
- HAFS T&E for other basins (non-NHC)
- HAFS IOC operational transition to NCO
- Develop HAFS/MOM6 coupling capability
- Flexible parent-nest ratio for moving nest
- Multiple moving nests in basin-centric domain
- Advanced DA system and vortex initialization scheme
- GSI to JEDI transition

Planning for Year 3 activities

7/01-07/31, 2022 Ingoing	08/01-10/31, 2022 Planned	11/01 2022-03/01, 2023 Planned	03/01-06/01, 2023 Planned	HAFS v1.0 becomes Operation
We are here	HAFS v0.3 Real time experiment	HAFS v1.0 Evaluation/verification/improv ement, retrospectives with	NCO implementation	
	Hurricane season	final tunings/developments		
Evaluation and development	HAFSv0.3 real time HFIP Demo	Evaluation and developments	HAFSv1.0 implementation	June 1, 2023

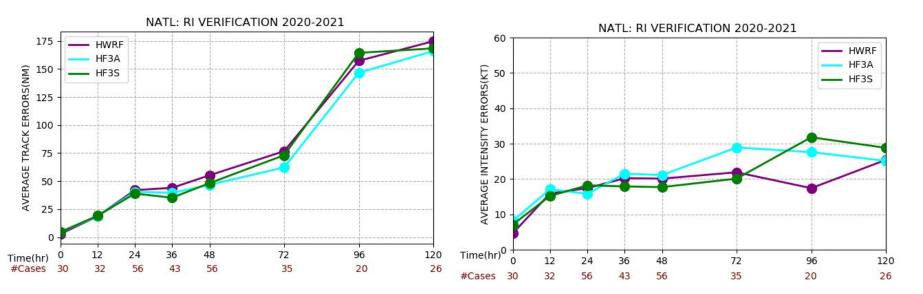
Prepare/conduct expt. with two configurations (HAFSv0.3):

- High resolution moving nest
- Updated model physics
- Vortex initialization
- Inner-core data assimilation
- Test & Evaluation
- Select optimal configurations

NATIONAL WEATHER SERVICE

Finalize HAFSv1.0

- Fine tune the system
- 3-year retrospectives
- Stakeholders approval
- Code optimization and compliance with NCO standard
- Hand off system to NCO


Thank you!

NATIONAL WEATHER SERVICE

Track/intensity verification for RI cycles only

Track: improved track, compared to HWRF at all forecast lead times for both config., except for HF3S at day-5 **Intensity:** HF3S outperformed HWRF up to day-3, HF3A similar to HWRF before day-2. Both configurations have relatively larger intensity errors than HWRF after day-3

